Contractions of quantum algebraic structures

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Wigner–Inönü Group Contraction to Contractions of Algebraic Structures

The development of the notion of group contraction first introduced by E. Inönü and E.P. Wigner in 1953 is briefly reviewed. The fundamental role of the idea of degenerate transformations is stressed. The significance of contractions of algebraic structures for exactly solvable problems of mathematical physics is noticed.

متن کامل

Algebraic structures in quantum gravity

Starting from a recently-introduced algebraic structure on spin foam models, we define a Hopf algebra by dividing with an appropriate quotient. The structure, thus defined, naturally allows for a mirror analysis of spin foam models with quantum field theory, from a combinatorial point of view. A grafting operator is introduced allowing for the equivalent of a Dyson-Schwinger equation to be writ...

متن کامل

Contractions: Nijenhuis and Saletan tensors for general algebraic structures

In this note we study generalizations in many directions of the contraction procedure for Lie algebras introduced by Saletan [Sa]. We consider products of arbitrary nature, not necessarily Lie brackets, and we generalize to infinite dimension, considering a modification of the approach by Nijenhuis tensors to bilinear operations on sections of finite-dimensional vector bundles. We apply our gen...

متن کامل

Algebraic structures of multipartite quantum systems

We investigate the relation between multilinear mappings and multipartite states. We show that the isomorphism between multilinear mapping and tensor product completely characterizes decomposable multipartite states in a mathematically well-defined manner.

متن کامل

Algebraic Structures Underlying Quantum Information Protocols

In this paper, we describe the teleportation from the viewpoints of the braid group and Temperley–Lieb algebra. We propose the virtual braid teleportation which exploits the teleportation swapping and identifies unitary braid representations with universal quantum gates, and suggest the braid teleportation which is explained in terms of the crossed measurement and the state model of knot theory...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fortschritte der Physik

سال: 2010

ISSN: 0015-8208

DOI: 10.1002/prop.201000032